Abstract

The myristoylated, alanine-rich C kinase (PKC) substrate (MARCKS) is a major, specific substrate of PKC that is phosphorylated during macrophage and neutrophil activation, growth factor-dependent mitogenesis and neurosecretion. MARCKS is also a calmodulin-binding protein and binding of calmodulin inhibits phosphorylation of the protein by PKC. Several recent observations from our laboratories suggest a role for MARCKS in cellular morphology and motility. First, in macrophages MARCKS is located at points of cellular adherence where actin filaments insert at the plasma membrane and is released to the cytoplasm upon activation of PKC. Second, during neutrophil chemotaxis MARCKS undergoes a cycle of release from, and reassociation with, the plasma membrane. Third, in vitro, MARCKS is an F-actin cross-linking protein whose activity is inhibited by PKC-mediated phosphorylation and by binding to calmodulin. MARCKS therefore appears to be a regulated cross-bridge between actin and the plasma membrane. Regulation of the plasma membrane-binding and actin-binding properties of MARCKS represents a convergence of the PKC and calmodulin signal transduction pathways in the control of actin cytoskeleton-plasma membrane interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.