Abstract

Mesenchymal stem cells-conditioned medium (MSC-CM) is the extraction from stem cell medium containing biological substances, including growth factors and cytokines. These substances play roles in the various functions of body regulatory, including bone formation. However, the effect of MSC-CM derived from human umbilical cord injection in femur fracture healing of rats has not been reported previously. This study aims to see the effect of MSC-CM derived from human umbilical cord injection on the callus formation of bone fracture healing in Wistar rats (Rattus norvegicus). A femur fracture in 54 Wistar rats was made by surgery according to the procedure under sterile conditions. After the surgery, rats were divided into 2 groups of 27, respectively. Injection in the control (0.1 mL/kg body weight NaCl) and MSC-CM group (0.1 mL/kg body weight MSC-CM) was performed on weeks 0, 1, 2, 3, 4, 5, 6, 7, and 8 after surgery. Radiographic images and the femur bone samples were taken and collected on days 1, 7, 14, 21, 28, 35, and 60 after surgery. Bone samples were then fixed in Bouin solution. Histologic preparations were done by the paraffin method, by cutting the tissue blocks into 5 μm thickness and then staining with Mallory aniline blue staining. The results were analyzed descriptively and quantitatively. The result showed that the soft callus formation occurred rapidly and got wider in the MSC-CM group than that of the control group. The administration of MSC-CM injection postfracture surgery to femur fracture cases in rats was capable to accelerate the callus formation.

Highlights

  • Mesenchymal stem cell (MSC) is a pluripotent cell that can be differentiated into many kinds of a cell, such as a chondrocyte, osteocyte, adipocyte, myocyte, and neuron [1]

  • E callus was formed on day 14 after surgery in the MSCCM group, while in the control group, it was formed on day 28. e callus continuously formed, and at day 60, the callus had formed into compact bone in both groups

  • Mesenchymal stem cells-conditioned medium derived from human umbilical cord has been previously reported by Kim et al [19] which contained endothelial growth factor (EGF), vascular endothelial growth factor (VEGF), granulocyte colony stimulating factor (GCSF), granulocyte macrophage CSF (GM-CSF), transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF), basic fibroblast growth factor, and keratinocyte growth factor (KGF)

Read more

Summary

Introduction

Mesenchymal stem cell (MSC) is a pluripotent cell that can be differentiated into many kinds of a cell, such as a chondrocyte, osteocyte, adipocyte, myocyte, and neuron [1]. Mesenchymal stem cell can be isolated from adipose tissue, bone marrow, placenta, umbilical cord, olfactory mucous, deciduous teeth, lien, brain [2], blood cell, amnion, vein, Wharton’s jelly, and umbilical cord matrix cell [3]. MSC can differentiate a mature cell and fill the damaged tissue, secreted cytokine, and other soluble mediates for tissue regeneration and mediator for protein release [4]. In line with the previous statement, there were some findings to reveal that factors secreted by MSC have therapeutic effects for antiapoptosis, angiogenic, anti-injury, immunomodulatory, and chemoattractive activity [11] and increase neuronal growth and durability [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call