Abstract

Callose is a β-l,3-glucan with diverse roles in the viral pathogenesis of plants. It is widely believed that the deposition of callose and hypersensitive reaction (HR) are critical defence responses of host plants against viral infection. However, the sequence of these two events and their resistance mechanisms are unclear. By exploiting a point inoculation approach combined with aniline blue staining, immuno-electron microscopy and external sphincters staining with tannic acid, we systematically investigated the possible roles of callose deposition during viral infection in soybean. In the incompatible combination, callose deposition at the plasmodesmata (PD) was clearly visible at the sites of inoculation but viral RNA of coat protein (CP-RNA) was not detected by RT-PCR in the leaf above the inoculated one (the upper leaf). In the compatible combination, however, callose deposition at PD was not detected at the site of infection but the viral CP-RNA was detected by RT-PCR in the upper leaf. We also found that in the incompatible combination the fluorescence due to callose formation at the inoculation point disappeared following the injection of 2-deoxy-D-glucose (DDG, an inhibitor of callose synthesis). At same time, in the incompatible combination, necrosis was observed and the viral CP-RNA was detected by RT-PCR in the upper leaf and HR characteristics were evident at the inoculation sites. These results show that, during the defensive response of soybean to viral infection, callose deposition at PD is mainly responsible for restricting the movement of the virus between cells and it occurs prior to the HR response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call