Abstract
Following multiple injections of horseradish peroxidase into the posterior neocortex of one hemisphere, we examined the distribution of retrogradely labeled cells and anterogradely labeled terminations in tangential and coronal sections through contralateral areas 17 and 18 in three groups of adult mice: normal-eyed (ZRDCT-n and C57Bl/6J strains), congenitally anophthalmic (ZRDCT-an strain), neonatally enucleated (ZRDCT-n strain). In agreement with previous studies, we observed that the pattern of callosal connections in areas 17 and 18 of normal-eyed mice contains the following features: (1) a dense band of callosal cells and terminations separating the interiors of areas 17 and 18, which have relatively few callosal connections, (2) a ring-like configuration anterolateral to area 17, (3) a region of dense labeling lateral to area 18, (4) a narrow band of labeling bridging the posterior portion of area 18, and (5) a region of labeling anteromedial to area 17. We find that all these features of the normal callosal pattern are recognizable in congenitally anophthalmic mice. Their presence in mice that never had eyes supports the hypothesis that central visual pathways can develop many aspects of their connectivity in the absence of input from the periphery. However, we also find that the details of certain features of the callosal pattern in congenitally eyeless mice often differ from those of the same features in normal-eyed mice, and that the between-animal variability in the appearance of these features is higher in eyeless mice. These latter findings indicate that the eyes are needed during normal development to fine-tune the pattern of callosal connections. Our results also reveal that the callosal pattern in neonatally enucleated mice does not differ significantly from that in congenitally anophthalmic mice, indicating that the period in which the eyes guide callosal development extends into postnatal life. While the present data do not delineate the time course of this period, the finding of similarly abnormal callosal patterns in congenitally anophthalmic and neonatally enucleated mice suggests that the eyes exert little if any influence prenatally. Finally, examination of coronal sections indicates that the laminar distribution of callosal connections develops normally in both groups of eyeless mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.