Abstract

ABSTRACT Methods normally used for acoustic individual identification can only compare a single song type, both within and between individuals, to determine identity, i.e. they are call-dependent. Call-independent identification does not involve direct comparison of a particular song type. It can therefore be carried out regardless of the amount of song sharing between individuals, or changes in an individual's repertoire over time. This wide applicability radically expands the range of situations in which acoustic individual identification can be used. Text-independent recognition is routinely conducted on human speech and in this paper the same techniques, using mel-frequency cepstral coefficients and multilayer perceptrons, were applied to bird song. Call-independent identification accuracies ranged from 54.3–75.7% in three passerine species. To suit bird song better, we modified the feature extraction methods and neural network architecture, resulting in accuracies of 69.3–97.1%. A comparison of call-dependent and call-independent identification showed little difference in accuracy for two species, while the third species had a lower accuracy for the call-independent identification. Our results demonstrate that individual identification from bird song can occur even when direct comparison of a particular song type is not possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.