Abstract
Endogenously produced glucocorticoids exhibit immunomodulating properties and are of pivotal importance for sepsis outcome. Uncontrolled activation of the immune-adrenal crosstalk increases the risk of sepsis-related death. Triggering receptor expressed on myeloid cells-2 (TREM2) is richly expressed on macrophages and has been demonstrated to improve outcome of sepsis by enhancing elimination of pathogens. However, the role and mode of action of macrophage TREM2 on adrenocortical steroidogenesis remains unclear in septic shock.The acute septic shock model was established by intraperitoneally challenging wild-type (WT) and TREM2 knock-out (Trem2−/−) mice with lipopolysaccharide (LPS, 30 mg/kg). The mice were assessed for TREM2 expression and local inflammation in adrenal gland and for synthesis of corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) in vivo. Bone marrow-derived macrophages or macrophage-derived exosomes were isolated from WT and Trem2−/− mice and were co-cultured with adrenocortical cells. The expression of steroidogenic enzymes and corticosterone production was assessed.Genetic deficiency of TREM2 caused significantly higher corticosterone levels at the early stage of LPS-induced septic shock; whereas TREM2 deficiency neither increased CRH and ACTH nor exacerbated the inflammation in adrenocortical tissue during septic shock. Ex vivo study revealed that Trem2−/− macrophages significantly promoted the expression of steroidogenic enzymes and increased production of corticosterone. Furthermore, Trem2−/− macrophage-derived exosomes were able to mimic Trem2−/− macrophages in enhancing adrenocortical steroidogenesis.At the early stage of LPS-induced septic shock, corticosterone biosynthesis can be inhibited by macrophage TREM2 in adrenocortical cells, which might partially associate with macrophage-derived exosomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.