Abstract

This call describes a numerical comparison exercise for the simulation of ingot solidification of binary metallic alloys. Two main steps are proposed, which may be treated independently: 1. The simulation of the full solidification process. First a specified ‘minimal’ solidification model is used and the contributors are provided with the corresponding sets of equations. The objective is to verify the agreement of the numerical solutions obtained by different contributors. Then different physical solidification models may be compared to check the features that allow for the best possible prediction of the physical phenomena. 2. A separate preliminary exercise is also proposed to the contributors, only concerned with the convective problem in the absence of solidification, in conditions close to those met in solidification processes. Two problems are considered for the case of laminar natural convection: transient thermal convection for a pure liquid metal with a Prandtl number on the order of 10 −2, and double-diffusive convection in an enclosure for a liquid binary metallic mixture with a Prandtl number on the order of 10 −2 and a Lewis number on the order of 10 4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.