Abstract
We consider the problem of call admission control (CAC) and routing in an integrated services network that handles several classes of calls of different value and with different resource requirements. The problem of maximizing the average value of admitted calls per unit time (or of revenue maximization) is naturally formulated as a dynamic programming problem, but is too complex to allow for an exact solution. We use methods of neuro-dynamic programming (NDP) [reinforcement learning (RL)], together with a decomposition approach, to construct dynamic (state-dependent) call admission control and routing policies. These policies are based on state-dependent link costs, and a simulation-based learning method is employed to tune the parameters that define these link costs. A broad set of experiments shows the robustness of our policy and compares its performance with a commonly used heuristic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.