Abstract

The genomic era contributes to update the taxonomy of many debated terrestrial vertebrates. In an accompanying work, we provided a comprehensive molecular assessment of spadefoot toads (Pelobates) using genomic data. Our results call for taxonomic updates in this group. First, nuclear phylogenomics confirmed the species-level divergence between the Iberian P.cultripes and its Moroccan relative P.varaldii. Second, we inferred that P.fuscus and P.vespertinus, considered subspecies until recently, feature partial reproductive isolation and thus deserve a specific level. Third, we evidenced cryptic speciation and diversification among deeply diverged lineages collectively known as Pelobatessyriacus. Populations from the Near East correspond to the Eastern spadefoot toad P.syriacus sensu stricto, which is represented by two subspecies, one in the Levant (P.s.syriacus) and the other in the rest of the range (P.s.boettgeri). Populations from southeastern Europe correspond to the Balkan spadefoot toad, P.balcanicus. Based on genetic evidence, this species is also polytypic: the nominal P.b.balcanicus inhabits the Balkan Peninsula; a new subspecies P.b.chloeaessp. nov. appears endemic to the Peloponnese. In this paper, we provide an updated overview of the taxonomy and distribution of all extant Pelobates taxa and describe P.b.chloeaessp. nov.

Highlights

  • The revolution initiated by high-throughput sequencing techniques has reached the field of phylogeography (Coates et al 2018), where it lifts the veil on cryptic species and solves long-term taxonomic issues (e.g. Rodriguez et al 2017; Psonis et al 2018; Dufresnes et al 2018, 2019a)

  • Six of them correspond to species level divergences, given their confirmed or putative reproductive isolation, as inferred from hybrid zone analyses, which make ad hoc tests to evaluate where two lineages stand along the speciation continuum (Singhal and Moritz 2013; Dufresnes et al 2019b)

  • The species effect was mainly due to differences between the large P. cultripes, P. syriacus, and P. balcanicus versus the smaller P. varaldii, P. fuscus, and P. vespertinus: all pairwise comparisons between these two groups were significant (P < 0.001), but none within groups (P > 0.05) (Tukey test)

Read more

Summary

Introduction

The revolution initiated by high-throughput sequencing techniques has reached the field of phylogeography (Coates et al 2018), where it lifts the veil on cryptic species and solves long-term taxonomic issues (e.g. Rodriguez et al 2017; Psonis et al 2018; Dufresnes et al 2018, 2019a). We conducted such study in spadefoot toads from the monotypic family Pelobatidae Bonaparte, 1850 (genus Pelobates Wagler, 1830) endemic to the Western Palearctic (Dufresnes et al 2019b). These grassland species typically inhabit soft (e.g. sandy) soils with freshwater ponds for breeding and have a semi-fossorial lifestyle, thanks to well-known adaptations such as metatarsal spades (to dig themselves in) and a strongly ossified skull (to dig themselves out) (Székely et al 2017; Dufresnes 2019). Mediterranean populations from the Near East and the Balkans are commonly referred to as P. syriacus Boettger, 1889 and split as two subspecies: P. syriacus syriacus in Asia Minor and P. syriacus balcanicus Karaman, 1928 in the Balkans, based on morphological (Uğurtas et al 2002) and scattered phylogenetic data (Veith et al 2006; Litvinchuk et al 2013; Ehl et al 2019)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.