Abstract

The present study developed an efficient fluorescent approach, based on a supramolecular assembly between gold nanoclusters and calix[4]arene derivatives (C4A-Ds), to detect sever pollutant of perfluorooctane sulfonic acid (PFOS). For that, a series of C4A-Ds with different chain lengths and positive charges at the wider rim were designed and synthesized. Cytidine-5′ phosphate protected gold nanoclusters (AuNCs@CMP) were then assembled with calix[4]arene (LC4AP) to form AuNCs/LC4AP assembly, leading to 8-fold luminescence enhancement via the AIEE effect. However, further binding with PFOS reconstituted the as-formed assembly hrough a competitive effect, generating a fluorescence quenching. Particularly, the linear fluorescence response of AuNCs/LC4AP to PFOS realized a highly sensitive determination of the pollutant PFOS in a wide range (2.0–100 μM). In addition, the developed method successfully detected PFOS in pool water near a fire drill field, being good enough for the practical PFOS determination. The calixarene mediated method, based on the fluorescence “on–off” strategy of metal nanoclusters, is sensitive, rapid-responsive, economical, particularly, suitable for the PFOS determination in practice. It takes full advantage of the molecular recognition and self-assembly of artificial macrocyclic host molecules as a promising strategy for the PFOS determination, and will be highlight to develop new detection methods for PFOS and other poisonous compounds in environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.