Abstract
A calix[4]pyrrole derivative, namely, meso-tetramethyl tetrakis (4-phenoxy methyl ketone) calix[4]pyrrole, 1, was synthesized and structurally (1H NMR) and thermodynamically characterized. The complexing properties of this receptor with a wide variety of anions and cations in dipolar aprotic media (acetonitrile, propylene carbonate, and dimethyl sulfoxide) were investigated through 1H NMR and conductance studies. The former technique was used to assess whether or not complexation occurs and if so to identify the active sites of interaction of 1 with ions. The composition of the complexes was established by conductance measurements. It was found that in dipolar aprotic solvents, 1 interacts only with two polluting ions (fluoride and mercury). The complexation thermodynamics of 1 and these ions in these solvents is reported. The medium effect on the binding process involving the fluoride ion is discussed taking into account the solvation properties of reactants and the product. Complexes of moderate stability are found. Given that this is an important factor to consider for the recycling of the loaded material in extraction processes, 1 was treated with formaldehyde in basic medium leading to the production of a calix[4]pyrrole based material able to extract fluoride and mercury (II) ions from water. Thus the optimum conditions for the extraction of these ions from aqueous solutions were established. The material is easily recyclable using an organic acid. Final conclusions are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.