Abstract

AbstractThe photogeneration of electricity and solar fuels by solar irradiation in photoelectrochemical cells is one of the sectors with the highest growth potential in the decarbonised society. However, the use of different components, in particular photosensitizers and catalysts, can present problems of charge transfer efficiency at the interface, leading to lower final efficiencies. In this work we present novel integrated photosensitizer‐catalyst dyads based on robust and, at the same time, flexible host‐guest non‐covalent interactions through the use of calix[4]arene cavities. Current photogeneration in photoelectrochemical cells showed twice greater efficiency in the integrated calixarene‐based host‐guest dyads compared to the traditional architecture based on the separate photosensitizer‐catalyst pair. Molecular dynamics studies have shown that the enhanced performance originates from an optimization of the distances between the centres of the photosensitizer, catalyst and semiconductor involved in the charge transfer processes, thus allowing a higher final efficiency of the charge photogeneration process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.