Abstract

A critical component of the State Water Resource Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program is to assess the major threats to groundwater resources that supply drinking water to Californians (Belitz et al., 2004). Nitrate concentrations approaching and greater than the maximum contaminant level (MCL) are impairing the viability of many groundwater basins as drinking water sources Source attribution and nitrate fate and transport are therefore the focus of special studies under the GAMA program. This report presents results of a study of nitrate contamination in the aquifer beneath the City of Livermore, where high nitrate levels affect both public supply and private domestic wells. Nitrate isotope data are effective in determining contaminant sources, especially when combined with other isotopic tracers such as stable isotopes of water and tritium-helium ages to give insight into the routes and timing of nitrate inputs to the flow system. This combination of techniques is demonstrated in Livermore, where it is determined that low nitrate reclaimed wastewater predominates in the northwest, while two flowpaths with distinct nitrate sources originate in the southeast. Along the eastern flowpath, {delta}{sup 15}N values greater than 10{per_thousand} indicate that animal waste is the primary source. Diminishing concentrations over time suggest that contamination results from historical land use practices. The other flowpath begins in an area where rapid recharge, primarily of low nitrate imported water (identified by stable isotopes of water and a tritium-helium residence time of less than 1 year), mobilizes a significant local nitrate source, bringing groundwater concentrations above the MCL of 45 mg NO{sub 3} L{sup -1}. In this area, artificial recharge of imported water via local arroyos induces flux of the contaminant to the regional aquifer. The low {delta}{sup 15}N value (3.1{per_thousand}) in this location implicates synthetic fertilizer. Geochemical modeling supports the hypothesis of separate sources, one including organic carbon, as from animal waste, and one not. In addition to these anthropogenic sources, natural nitrate background levels between 15 and 20 mg NO{sub 3} L{sup -1} are found in deep wells with residence times greater than 50 years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.