Abstract

Widespread electrification, i.e., switching direct fossil fuel end-uses to electricity, coupled with renewable power use is essential to achieve aggressive greenhouse gas and criteria pollutant emission reduction targets. Few have investigated the requisite electric grid infrastructure transformation and technology path coupled with spatial and temporal resolution of criteria pollutant emissions for assessing air quality impacts. In this study, we analyze grid and emission impacts of electrifying end-use sectors while decarbonizing power generation, using detailed modeling of infrastructure stocks and economic dispatch of the electric utility grid network. Results show that decarbonizing power supply without electrifying end-use sectors can reduce total greenhouse gas emissions by only 2 percent, while partial electrification of end-use sectors alongside decarbonizing electricity generation yields up to 20.3 percent greenhouse gas emission reductions compared to 1990 levels. Spatially and temporally resolved criteria pollutant emissions portend certain scenarios that improve air quality more than others, requiring consideration of spatial and temporal emission perturbations dictated by specific electrification end-uses and power generation technology dynamics for meeting the increased electric demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.