Abstract
In this paper, we define a notion of calibration for an approach to the classical Steiner problem in a covering space setting and we give some explicit examples. Moreover, we introduce the notion of calibration in families: the idea is to divide the set of competitors in a suitable way, defining an appropriate (and weaker) notion of calibration. Then, calibrating the candidate minimizers in each family and comparing their perimeter, it is possible to find the minimizers of the minimization problem. Thanks to this procedure we prove the minimality of the Steiner configurations spanning the vertices of a regular hexagon and of a regular pentagon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.