Abstract

The transfer of predictive models among photodiode array based, short wave near infrared spectrometers using the same illumination/detection optical geometry has been attempted using various chemometric techniques, including slope and bias correction (SBC), direct standardisation (DS), piecewise direct standardisation (PDS), double window PDS (DWPDS), orthogonal signal correction (OSC), finite impulse transform (FIR) and wavelet transform (WT). Additionally, an interpolation and photometric response correction method, a wavelength selection method and a model updating method were assessed. Calibration transfer was attempted across two populations of mandarin fruit. Model performance was compared in terms of root mean squared error of prediction ( RMSEP), using Fearn's significance testing, for calibration transfer (standardisation) between pairs of spectrometers from a group of four spectrometers. For example, when a calibration model (Root Mean Square Error of Cross-Validation [ RMSECV = 0.26% soluble solid content (SSC)], developed on one spectrometer, was used with spectral data collected on another spectrometer, a poor prediction resulted ( RMSEP = 2.5% SSC). A modified WT method performed significantly better (e.g. RMSEP = 0.25% SSC) than all other standardisation methods (10 of 12 cases), and almost on a par with model updating (MU) (nine cases with no significant difference, one case and two cases significantly better for WT and MU, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.