Abstract
A MEMS based piezoresistive strain sensor was designed, fabricated and calibrated. A single strip of doped n-polysilicon sensing material was patterned over a thin Si/sub 3/N/sub 4//SiO/sub 2/ membrane. The silicon wafer was etched beneath this thin membrane. The intent of this design was to fabricate a flexible MEMS strain sensor. A calibration technique for measuring the strain sensor performance is described. The sensor calibration technique (to find the relationship between change in resistance and strain) entails developing a repeatable relationship between the change in sensor resistance and the strain measured at the sensor. The sensor sensitivity is evaluated by embedding the sensor in a vinyl ester epoxy plate and loading the plate. This calibration technique captures the effects of strain transfer to the stiff silicon wafer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.