Abstract

AbstractIn situ cosmogenic 14C (in situ 14C) analysis from quartz‐bearing rocks is a novel isotopic tool useful for quantifying recent surface exposure histories (up to ∼25 ka). It is particularly powerful when combined with longer‐lived cosmogenic isotopes such as 10Be. Recent advances in the extraction of in situ 14C from quartz now permit the routine application of this method. However, only a few experiments to calibrate the production rate of in situ 14C in quartz have been published to date. Here, we present a new in situ 14C production rate estimate derived from a well‐dated debris flow deposit in the Southern Alps, New Zealand, previously used to calibrate 10Be production rates. For example, based on a geomagnetic implementation of the Lal/Stone scaling scheme we derive a spallogenic production rate of 11.4 ± 0.9 atoms 14C (g quartz)−1 a−1 and a 14C/10Be spallogenic production rate ratio of 3.0 ± 0.2. The results are comparable with production rates from previous calibrations in the northern hemisphere. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.