Abstract

The goal of this work is to build a unique numerical method to obtain the basic aerodynamic characteristics of the aircraft and to enable a wide application of the method in the analysis of some aerodynamic characteristics of the aircraft, without use of empirical methods. The Computational fluid dynamics (CFD) simulation method was being calibrated based on test results of the standard AGARD-B (Advisory Group for Aerospace Research and Development) test model, which were obtained in the T-38 trisonic wind tunnel facility of the Military Technical Institute (VTI) in Belgrade, Serbia.The paper presents the CFD simulation through a description of the conditions of flow, geometry of the computer domain, grid density and mesh strategy, boundary conditions, initial strategy and turbulence model. The CFD simulation was carried out for flow cases with similarity parameters M = 0.6, M = 0.85 and M = 1.6 and Re = from 7.7(x106) to 9.9(x106) . The results of calculations were compared with the appropriate experimental ones and presented in the form of comparative diagrams for the drag, lift and pitching moment coefficients. The results of investigation presented in divergence diagrams show very good agreement between numerical and experimental ones. Simulated flows are illustrated by the distribution of pressure and velocity components on the surface of the tested model and the computational domain. This CFD simulation will be applied to other similar aerodynamic designs for a wide range angles of attack and Mach numbers and can be a strong point for the development of different aerodynamic designs.The ultimate aim of the work is to use the previous calibrated CFD simulation method as the basis for future determination of the aerodynamic characteristics of aircraft in non-stationary flight modes, caused by motion of the aircraft and/or by changing the free-velocity vector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call