Abstract

Single-beam acoustic tweezers have recently been demonstrated to be capable of selective three-dimensional trapping. This new contactless manipulation modality has great potential for many scientific applications. Its development as a scientific tool requires precise calibration of its radiation force, specifically its axial component. The lack of calibration for this force is mainly due to its weak magnitude compared to competing effects such as weight. We investigate an experimental method for the calibration of the axial stiffness of the radiation force by observing the axial oscillations of a trapped bead in a microgravity environment. The stiffness exhibits a linear relationship with the acoustic intensity and is of the mN/m order. Then, a predictive model, loaded with the experimental acoustic field, is compared to the measured stiffness with very good agreement, within a single amplitude coefficient. This study paves the way for the development of calibrated acoustic tweezers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.