Abstract

In the present study, the free vibration response of double-walled carbon nanotubes (DWCNTs) is investigated. Eringen's nonlocal elasticity equations are incorporated into the classical Donnell shell theory accounting for small scale effects. The Rayleigh–Ritz technique is applied to consider different sets of boundary conditions. The displacements are represented as functions of polynomial series to implement the Rayleigh–Ritz method to the governing differential equations of nonlocal shell model and obtain the natural frequencies of DWCNTs relevant to different values of nonlocal parameter and aspect ratio. To extract the proper values of nonlocal parameter, molecular dynamics (MD) simulations are employed for various armchair and zigzag DWCNTs, the results of which are matched with those of nonlocal continuum model through a nonlinear least square fitting procedure. It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal parameter has the capability to predict the free vibration behavior of DWCNTs, which is comparable with the results of MD simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call