Abstract

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is one of the most powerful accelerator-driven neutron sources in the world. The intense protons strike on SNS’s mercury target to provide bright neutron beams, which also leads to severe fluid-structure interactions inside the target. Prediction of resultant loading on the target is difficult particularly when helium gas is injected into mercury to reduce the loading and mitigate the pitting damage on vessel walls. A 2-phase material model that incorporates the Rayleigh-Plesset (R-P) model is expected to address this multi-physics problem. However, several uncertain parameters in the R-P model require intensive simulations to determine their optimal values. With the help of machine learning and the measured target strain, we have studied the major uncertain parameters in this R-P model and developed a framework to identify optimal parameters that significantly reduce the discrepancy between simulations and experimental strains. The preliminary results show the possibility of using this mercury/helium mixture and surrogate models to predict a better match of target strain response when the helium gas is injected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.