Abstract

Soft sensor is an efficacious solution to predict the hard-to-measure target variable by using the process variables. In practical application scenarios, however, the feedback cycle of target variable is usually larger than that of the process variables, which causes the deficiency of prediction errors. Consequently soft sensor cannot be calibrated timely and deteriorates. We proposed a soft sensor calibration method by using Just-in-time modeling and AdaBoost learning method. A moving window consisting of a primary part and a secondary part is constructed. The primary part is made of history data from certain number of constant feedback cycles of target variable and the secondary part includes some coarse target values estimated initially by Just-in-time modeling during the latest feedback cycle of target variable. The data set of the whole moving window is processed by AdaBoost learning method to build an auxiliary estimation model and then target variable values of the latest corresponding feedback cycle are reestimated. Finally the soft sensor model is calibrated by using the reestimated target variable values when the target feedback is unavailable; otherwise using the feedback value. The feasibility and effectiveness of the proposed calibration method is tested and verified through a series of comparative experiments on a pH neutralization facility in our laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.