Abstract

We report on the use of quartz-enhanced photoacoustic spectroscopy for continuous carbon-dioxide measurements in humid air over a period of six days. The presence of water molecules alters the relaxation rate of the target molecules and thus the amplitude of the photoacoustic signal. Prior to the measurements, the photoacoustic sensor system was pre-calibrated using CO2 mole fractions in the range of 0–10−3 (0–1000 ppm) and at different relative humidities between 0% and 45%, while assuming a model hypothesis that allowed the photoacoustic signal to be perturbed linearly by H2O content. This calibration technique was compared against an alternative learning-based method, where sensor data from the first two days of the six-day period were used for self-calibration. A commercial non-dispersive infrared sensor was used as a CO2 reference sensor and provided the benchmark for the two calibration procedures. In our case, the self-calibrated method proved to be both more accurate and precise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.