Abstract

Prior studies have highlighted the importance of calibrating receiver antennas in target direction-of-arrival (DOA) estimation and surface current measurement for high-frequency (HF) radar systems. It is worth noting that the calibration contributes to the performance of both shore-based HF radar and platform-mounted HF radar. Compared with shore-based HF radar, the influence of six-degrees-of-freedom (six-DOF) platform motion should be considered in the calibration of platform-mounted HF radar. This paper initially describes a calibration scheme that receives phasedarray antennas for an anchored platform-mounted HF radar incorporating a model of free rotation, which is called yaw rotation and dominates the six-DOF platform motion in this study. In the presence of yaw rotation, the amplitude and phase of the source calibration signal from the other shore-based radar sites reveal the directional sensitivity of the receiver phased-array antennas. The calibration of receiver phased-array antennas is composed of channel calibration (linking cables and receiver hardware calibration) and antenna pattern calibration. The antenna pattern at each bearing can be represented by the Fourier series. The estimation of channel calibration and antenna pattern calibration depends on an overdetermined HF radar system consisting of observed values and theoretical constraints, so the least-squares fits of the channel calibration coefficients and antenna pattern calibration coefficients are obtained. The experimental results show that the target DOA estimation and surface current measurement can be improved if the phased-array platform-mounted HF radar system is calibrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call