Abstract

In neutron reference radiation fields, the conventional true value of the personal dose equivalent, H(p)(10), is derived from the spectral neutron fluence and recommended conversion coefficients. This procedure requires the phantom on which the personal dosemeter is mounted to be irradiated with a broad and parallel beam. In many practical situations, the change of the neutron fluence and/or the energy distribution over the surface of the phantom may not be neglected. For a selection of typical irradiation conditions in neutron reference radiation fields, the influence of this effect has been analysed using numerical methods. A further problem, which is of relevance for the calibration of dosemeters measuring both the neutron and the photon component of mixed fields, is the 'double counting' of the dose equivalent due to neutron-induced photons. The relevance of this conceptual problem for calibrations in mixed-field dosimetry was analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call