Abstract

Machine learning methods and agent-based models enable the optimization of the operation of high-capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was obtained from the waiting room traffic of a vaccination center. Walking speed distribution, the number of stops, the distribution of waiting times, and the locations of waiting points were extracted. Of the 9 machine learning algorithms, the random forest model achieved the highest accuracy in classifying valid data and noise. The proposed microscopic calibration allows for more accurate capacity assessment testing, procedural changes testing, and geometric modifications testing in parts of the facility adjacent to the calibrated parts. The results show that the proposed method achieves state-of-the-art performance on a violent-flows dataset. The proposed method has the potential to significantly improve the accuracy and efficiency of input model predictions and optimize the operation of high-capacity facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.