Abstract

ABSTRACT A monolithic x-ray interferometer manufactured at KRISS has been used to provide a means for the calibration of transducers with the traceability to the standards of length in the sub-nanometer region. Such calibration by the monolithic x-ray interferometer using the lattice spacing of silicon is directly traceable to primary standards. The lattice plane used for diffraction was (220) with lattice parameter of 0.192 nm. One period of the x-ray interference fringe corresponds to the lattice parameter. We could achieve a resolution of less than 0.01 nm by detecting the phase of the x-ray interference signal. A monolithic x-ray interferometer was made from a silicon single crystal. It comprises three thin lamellas called splitter, mirror, and analyzer, and it incorporates a double parallel spring structure for the translation of the analyzer lamella. The x-ray interferometer has been applied to the measurements of displacements at sub-nanometer levels. The displacements of linear transducers have been measured using the x-ray interferometer and the results of these measurements are reported in the paper. Keyword : nano-transducer calibration, monolithic x-ray interferometer, nanometrology

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.