Abstract

Reference evapotranspiration (ETo) is an important parameter used in numerous applications, such as climatological and hydrological studies, as well as for water resources planning and management. There are several methods to estimate ETo, being that the FAO Penman-Monteith (EToPM) method is considered standard. This method needs many parameters (solar radiation, air temperature, humidity and wind speed), however there are still many uncovered areas, suggesting the need for methods of calculating evapotranspiration based on few meteorological elements, such as air temperature. Therefore, this study aimed to determine the ETo by Hargreaves-Samani method in the experimental watershed of the “Riacho do Papagaio” farm, in county of Sao Joao, in north-eastern Brazil, using data of 2011 and 2012. Reference evapotranspiration estimated by non-calibrated Hargreaves-Samani method (EToHS) was overestimated in all months (RMSE = 1.43 mm·d-1), mainly in months of lower evaporative demand (from May to July). Because of these tendencies, this method cannot be used in its original form to estimate ET for this region; therefore, a calibration of radiation adjustment coefficient (kRs) was performed. The calibrated Hargreaves-Samani method (EToHSc) had better performance (RMSE = 0.52 mm·d-1), being suitable for predicting ETo in this region.

Highlights

  • Evapotranspiration is one of the major components in the hydrological cycle, and its reliable estimation is essential to water resources planning and management

  • This method considers many parameters related to the evapotranspiration process: net radiation, air temperature, vapor pressure deficit and wind speed; and it has presented very good results when compared to data from lysimeters populated with short grass or alfalfa [2]

  • Appropriate for the calibration of other ETo estimation equations. The utilization of these calibrated ETo equations is recommended in the absence of data of any of the meteorological parameters necessary for the application of empirical background. The FAO Penman-Monteith (EToPM) [4]

Read more

Summary

Introduction

Evapotranspiration is one of the major components in the hydrological cycle, and its reliable estimation is essential to water resources planning and management. There are several methods to estimate ETo, but their performance in different environments is diverse, since all of them have some empirical background. The FAO Penman-Monteith (EToPM) method has been considered as a universal standard to estimate ETo for more than a decade. This method considers many parameters related to the evapotranspiration process: net radiation, air temperature, vapor pressure deficit and wind speed; and it has presented very good results when compared to data from lysimeters populated with short grass or alfalfa [2]

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.