Abstract

Calibration of electrodiffusion (ED) probes with respect to the wall velocity gradient measurements has been experimentally studied in a fully developed turbulent channel flow over the Reynolds number range 14000–23000. In steady state conditions, direct calibration concerning the mean wall velocity gradient can be provided using simultaneous transient and steady state diffusion limiting current measurements. Indirect calibration of the ED probes regarding the turbulent fluctuation has been undertaken using a spectral analysis performed with probes of different size and geometry. This indirect calibration method has been supported using the measurements of thermo-dependence of molecular diffusivity. In this case, only one ED probe can be used for calibration. Dynamic calibration provides necessary information about critical longitudinal dimension of ED probes. When the longitudinal dimension of the probes exceeds the critical length, the probes becomes sensitive to the normal fluctuation as well. This fact has been confirmed using different orientation of the rectangular ED probe with respect to the flow direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.