Abstract

Calibration of solid state nuclear track detector CR-39 was carried out with very low-energy monoenergetic protons of 20–100 keV from a Cockcroft Walton accelerator. To reduce the beam of the proton from the accelerator, a novel method was adopted by means of a high voltage pulse generator. The irradiation time of the proton beam on each CR-39 sheet was shortened to one pulse with duration of 100 ns, so that very separated proton tracks around 10 4 cm - 2 can be irradiated and observed and measured on the surface of the CR-39 detector after etching. The variations of track diameter with etching time as well as with proton energy response curve has been carefully calibrated for the first time in this very low energy region. The calibration shows that the optical limit for the observation of etched tracks of protons in CR-39 is about or a little lower that 20 keV, above which the proton tracks can be seen clearly and the response curve can be used to distinguish protons from the other ions and determine the energy of the protons. The extension of response curve of protons from traditionally 20 to 100 keV in CR-39 is significant in retrieving information of protons produced in the studies of nuclear physics, plasma physics, ultrahigh intensity laser physics and laser acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call