Abstract

BackgroundFreehand 3D ultrasound is a powerful imaging modality with many potential applications. However, its reliance on add-on position sensors, which can be expensive, obtrusive and difficult to calibrate, is a major drawback. Alternatively, freehand 3D ultrasound can be acquired without a position sensor using image-based techniques. Sensorless reconstructions exhibit good fine scale detail but are prone to tracking drift, resulting in large scale geometrical distortions.MethodWe investigate an alternative position sensor, the Xsens MT9-B, which is relatively unobtrusive but measures orientation only. We describe a straightforward approach to calibrating the sensor, and we measure the calibration precision (by repeated calibrations) and the orientation accuracy (using independent orientation measurements). We introduce algorithms that allow the MT9-B potentially to correct both linear and angular drift in sensorless reconstructions.ResultsThe MT9-B can be calibrated to a precision of around 1°. Reconstruction accuracy is also around 1°. The MT9-B was able to eliminate angular drift in sensorless reconstructions, though it had little impact on linear drift. In comparison, six degree-of-freedom drift correction was shown to produce excellent reconstructions.ConclusionGold standard freehand 3D ultrasound acquisition requires the synthesis of image-based techniques, for good fine scale detail, and position sensors, for good large scale geometrical accuracy. A hybrid system incorporating the MT9-B offers an attractive compromise between quality and ease of use. The position sensor is unobtrusive and the system is capable of faithful acquisition, with the one exception of linear drift in the elevational direction.

Highlights

  • Freehand three dimensional (3D) ultrasound is a powerful imaging modality with many potential applications

  • Gold standard freehand 3D ultrasound acquisition requires the synthesis of imagebased techniques, for good fine scale detail, and position sensors, for good large scale geometrical accuracy

  • A hybrid system incorporating the MT9-B offers an attractive compromise between quality and ease of use

Read more

Summary

Results

The MT9-B can be calibrated to a precision of around 1°. The MT9-B was able to eliminate angular drift in sensorless reconstructions, though it had little impact on linear drift. Six degree-of-freedom drift correction was shown to produce excellent reconstructions

Conclusion
Background
Methods
Results and Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.