Abstract

Despite substantial policy attention, tropical forests in Southeast Asian region are releasing large amount of carbon to the atmosphere due to accelerating deforestation. Accurately determining forest statistics and characterizing aboveground forest carbon stocks (AFCSs) are always challenging in the region. In order to develop more accurate estimates of AFCS, the present study collected airborne LiDAR and field measurements data and calibrated AFCS models to estimate carbon stock in the tropical forests in central Sumatra. The study region consists of natural forests, including peat swamp, dry moist, regrowth, and mangrove, and plantation forests, including rubber, acacia, oil palm, and coconut. To cover the different forest types, 60 field plots of 1 ha in size were inventoried. Eight transects crossing these field plots were acquired to calibrate the LiDAR to AFCS models. The AFCS values for the field plots ranged from 4 to 161 Mg ha <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> . General models were fitted without considering forest types, whereas a specific model was fitted for each specific forest type. Five alternative general models with different LiDAR metrics were calibrated with model performance expressed as R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ranging from 0.73 to 0.87 and root-meansquare error (RMSE) values ranging from 17.4 to 25.0 Mg ha <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> . Seven forest-specific AFCS models were calibrated for different forest types, with R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> values ranging from 0.72 to 0.97 and RMSE values ranging from 1.4 to 10.7 Mg ha <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> . The performance of each model was cross-validated by iteratively removing one data point. While forest-specific models provide better AFCS estimates, the general models are still useful when forest types are ambiguous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.