Abstract

Abstract The importance of atmospheric aerosols in understanding global climate changes has renewed interest in measurements of cloud condensation nuclei (CCN). To obtain high-resolution (125 m) vertical profiles of CCN number concentration, a balloon-borne instrument was developed. The instrument deduces the CCN concentration from measurements of laser light scattered by water droplets that condense on CCN within a static thermal-gradient diffusion chamber. The amount of light scattering is linearly proportional to the number of droplets within the diffusion chamber. Correlating the number of droplets within the sample volume with the amount of light scattered by the droplets provides the calibration constant that relates scattered light to CCN concentration. The calibration was tested by comparisons between the CCN counter and a condensation nuclei counter when sampling monodisperse aerosol larger than the CCN counter’s critical activation size. The calibration constant depends on supersaturation, and d...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.