Abstract

A novel passive air sampler was designed and tested that individually collects the gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) in air. The sampler was calibrated against a conventional active sampler in an indoor environment. A PUF (polyurethane foam) disk and a piece of GFF (glass fiber filter) were installed in a sampling shelter for collecting gaseous and particulate phase PAHs, respectively. The passive samplers were deployed in seven indoor locations for 86 days. Six times during this period, 24-h conventional active sampling was conducted for calibration at an average interval of 17-days. Principle component analysis showed that the measured congener profile compositions were totally different between the gaseous and particulate phase PAHs, but similar between the passive and the active samples. This suggested that gaseous and particulate phase PAHs were primarily trapped by the PUF disk and GFF, respectively. Linear relationships between the passively and the actively measured and log-transformed concentrations were derived for calibration of both gaseous and particulate phase PAHs. The uptake rates of the sampler were 0.10 +/- 0.014 m3/d and 0.007 +/- 0.001 m3/d for gaseous and particulate phase PAHs, respectively. The rates were significantly lower than those reported in the literature using similar PUF samplers, mainly because of the special design with limited air circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.