Abstract
Purpose This study aims to propose a calibration method to enhance the positioning accuracy in dual-robot collaborative operations, aiming to address the challenge of drilling hole spacing errors in spacecraft core cabin brackets that require an accuracy of less than 0.5 mm. Design/methodology/approach Initially, the cooperative error of dual robots is defined. Subsequently, an integrated model is constructed that encompasses the kinematic model errors of the dual robots, as well as the establishment errors of the base and tool frames. A calibration method for optimizing the cooperative accuracy of dual robots is proposed. Findings The application of the proposed method satisfies the collaborative drilling requirements for the spacecraft core cabin. The average cooperative positioning error of the dual robots was reduced from 0.507 to 0.156 mm, with the maximum value and standard deviation decreasing from 1.020 and 0.202 mm to 0.603 and 0.097 mm, respectively. Drilling experiments conducted on a core cabin simulator demonstrated that after calibration, the maximum hole spacing error was reduced from 1.219 to 0.403 mm, with all spacing errors falling below the 0.5 mm threshold, thus meeting the requirements. Originality/value This paper addresses the drilling accuracy requirements for spacecraft core cabins by using a calibration method to reduce the cooperative error of dual robots. The algorithm has been validated through experiments using ER 220 robots, confirming its effectiveness in fulfilling the drilling task requirements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Industrial Robot: the international journal of robotics research and application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.