Abstract

Kinematic calibration is an effective method of improving robotic absolute position accuracy by means of measurement, identification and compensation etc. This paper investigates the technology of kinematic calibration and error compensation for the 2-DOF planar parallel robot. A multi-step calibration method is presented based on error itterative method and nonlinear optimum method. Experimental results indicate that the proposed method can effectively compensate position error of the robot in Oxy plane, and the absolute position error of the calibrated robot is less than 6μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.