Abstract

Low-cost inertial/magnetic sensors are typically used to determine sensor attitude in navigation systems and biomedical applications. Different calibration procedures must be performed to correctly process sensor readings to achieve precise attitude reconstruction. This paper aims at providing a unified calibration framework in order to determine different calibration parameters such as sensor sensitivities, offsets, misalignment angles, and mounting frame rotation matrix. The sensor frame calibration procedure is reformulated in an ellipsoid-fitting problem and several approaches are reviewed in this perspective and a new approach is proposed. A mounting frame calibration procedure is also proposed that consists in simple in-plane movements. Simulation and experimental results gathered with low-cost sensors are shown and several calibration procedures are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.