Abstract

In this paper, a calibration method based on a two-step extended Kalman filter (EKF) is proposed. Firstly, the four vertex positions of a rectangle in the environment are calibrated. Specifically, in the first stage the initial position states of all anchor nodes are obtained using a rough localization method. In the second stage, the first and second step EKFs are used to obtain the real-time state of the measured target and all anchor nodes. The state estimation of all anchor nodes is achieved by employing the iterative process of the two-step EKF. The effectiveness and stability of the proposed algorithm are verified by simulations and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.