Abstract

A technique for quantitative analysis of gas mixtures in a laser mass spectrometer is presented. It is based on the addition of two calibration gases with different orders of multiphoton ionization process to the sample gas. The ratio of the signals of these two internal standards serves as a sensor for the laser intensity within the ionization volume. Thus strongly fluctuating signals due to higher-order multiphoton ionization can be normalized for every single laser shot. In addition, for such a relative measurement, effects of long-term drifts of the apparatus are eliminated. Concentrations varying from a few ppm to several percent could be determined with an accuracy better than 10% at every single laser shot. Therefore this technique allows high time resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.