Abstract

Profile feature imaging for ball targets is unaffected by the position of the target. On this basis, this study proposes a method for the rapid calibration of a line-structured light system based on a single ball target. The calibration process is as follows: the ball target is placed at least once and is illuminated by the light stripe from the laser projector. The vision sensor captures an image of this target. The laser stripe and profile images of the ball target are then extracted. Based on these extracted features and the optical centre of the camera, the spatial equations of the ball target and a cone profile are calculated. The plane on which the intersection line of the two equations lies is the light plane. Finally, the optimal solution for the light plane equation is obtained through nonlinear optimization under a maximum likelihood criterion. The validity of the proposed method is demonstrated through simulation and physical experiments. In the physical experiment, the field of view of the structured light vision sensor measures 300mm×250mm. A calibration accuracy of 0.04mm can be achieved using the proposed method. This accuracy is comparable to that of the calibration method which utilizes planar targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call