Abstract

In this research, a calibration method of a high-temperature guarded hot plate (GHP) apparatus was proposed in order to improve the measurement accuracy of thermal conductivity. The measurement uncertainties of this GHP apparatus were assessed to validate the reliability of this calibration method. The temperature difference across the guarded gap was set as the bias value to eliminate the heat exchange over the guarded gap. The effects of the thermal expansion and pressure of the apparatus on thickness were investigated to revise the measurement results of in-situ thickness and meter area, respectively. The assessed uncertainty indicated that the related expanded uncertainty approximately increased with the increase in testing temperature and the calibration method should be valid in the temperature range. The contribution of each factor on the combined uncertainty showed that the temperature distribution in plane direction was the main factor in influencing the measurement of thermal conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call