Abstract
We report on sensitive tunable laser absorption spectroscopy using a multipass gas cell and a solid-state photoacoustic optical power detector. Unlike photoacoustic spectroscopy (PAS), this method readily allows a low gas pressure for high spectral selectivity and a free gas flow for continuous measurements. Our photoacoustic optical power detector has a large linear dynamic range and can be used at almost any optical wavelength, including the middle infrared and THz regions that are challenging to cover with traditional optical detectors. Furthermore, our approach allows for compensation of laser power drifts with a single detector. As a proof of concept, we have measured very weak CO2 absorption lines at 9.2 µm wavelength and achieved a normalized noise equivalent absorption (NNEA) of 2.35·10−9 Wcm−1Hz−1/2 with a low-power quantum cascade laser. The absolute value of the gas absorption coefficient is obtained directly from the Beer-Lambert law, making the technique calibration-free.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.