Abstract
The performance of a hygrometer based on calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) for in-cylinder H2O measurements is demonstrated in a nearly unmodified production internal combustion engine. The H2O concentration is a proxy for the residual gas fraction remaining in the cylinder after intake-valve closure. One challenge for in-cylinder measurements, especially in multi-cylinder engines, is to obtain optical access to the combustion chamber. The measurements here were performed in the flywheel-side cylinder of a four-cylinder engine with small access ports that were previously designed for endoscopic imaging. Due to their position these ports prohibit the usual collinear arrangement of the optical elements typical for line-of-sight measurement techniques. Therefore, we developed a new “angled” fiber-optical interface, which allows a trans-illumination of the engine at a 90° angle. The optical fiber interface uses a scattering target inside the combustion chamber with its 84mm bore achieving an absorption length of about 70mm. With this arrangement, crank-angle resolved measurements of the H2O concentration during early compression could be realized with a temporal resolution of 250μs and a H2O detection limit of 0.074vol.%. This allows detailed analysis of single engine cycles as needed for residual gas investigations. Measurements were performed over a range of loads (25–100Nm) and speeds (1400–3650rpm), over which the residual gas fraction was expected to vary significantly. H2O concentrations were measured between 3.3 and 5.0vol.%. The results were compared with a simple model of residual gas content and were found to agree within the combined uncertainty of both methods, which gives an indication that dTDLAS can be used to validate more complex engine models beyond what is possible by pressure-trace analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.