Abstract

In this study, we conducted research on a deep learning-based blood pressure (BP) estimation model suitable for wearable environments. To measure BP while wearing a wearable watch, it needs to be considered that computing power for signal processing is limited and the input signals are subject to noise interference. Therefore, we employed a convolutional neural network (CNN) as the BP estimation model and utilized time-series electrocardiogram (ECG) and photoplethysmogram (PPG) signals, which are quantifiable in a wearable context. We generated periodic input signals and used differential and thresholding methods to decrease noise in the preprocessing step. We then applied a max-pooling technique with filter sizes of 2 × 1 and 5 × 1 within a 3-layer convolutional neural network to estimate BP. Our method was trained, validated, and tested using 2.4 million data samples from 49 patients in the intensive care unit. These samples, totaling 3.1 GB were obtained from the publicly accessible MIMIC database. As a result of a test with 480,000 data samples, the average root mean square error in BP estimation was 3.41, 5.80, and 2.78 mm Hg in the prediction of pulse pressure, systolic BP (SBP), and diastolic BP (DBP), respectively. The cumulative error percentage less than 5 mm Hg was 68% and 93% for SBP and DBP, respectively. In addition, the cumulative error percentage less than 15 mm Hg was 98% and 99% for SBP and DBP. Subsequently, we evaluated the impact of changes in input signal length (1 cycle vs. 30 s) and the introduction of noise on BP estimation results. The experimental results revealed that the length of the input signal did not significantly affect the performance of CNN-based analysis. When estimating BP using noise-added ECG signals, the mean absolute error (MAE) for SBP and DBP was 9.72 and 6.67 mm Hg, respectively. Meanwhile, when using noise-added PPG signals, the MAE for SBP and DBP was 26.85 and 14.00 mm Hg, respectively. Therefore, this study confirmed that using ECG signals rather than PPG signals is advantageous for noise reduction in a wearable environment. Besides, short sampling frames without calibration can be effective as input signals. Furthermore, it demonstrated that using a model suitable for information extraction rather than a specialized deep learning model for sequential data can yield satisfactory results in BP estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.