Abstract

Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.