Abstract
Outliers are observations that are significantly different from the other observations in a dataset. These types of observations are asymmetric in nature due to a lack of symmetry. The estimation of the cumulative distribution function (CDF) is an important statistical measure commonly discussed for symmetric datasets. However, the estimation of the CDF in the case of the asymmetric nature of the dataset is not a much-explored topic. In this article, we use calibration methodology with auxiliary information for modifying the traditional stratification weight, and hence, we obtain efficient estimates of the CDF using robust measures, i.e., mid-range and tri-mean, under the different distance functions. A simulation study is carried out to see the performance of proposed and existing estimators using asymmetric real-life datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.