Abstract

This paper presents a calibration method of a rule-based energy management strategy designed for a plug-in hybrid electric vehicle, which aims to find the optimal set of control parameters to compromise within the conflicting calibration requirements (e.g. emissions and economy). A comprehensive evaluating indicator covering emissions and economy performance is constructed by the method of radar chart. Moreover, a radial basis functions (RBFs) neural network model is proposed to establish a precise model within the control parameters and the comprehensive evaluation indicator. The best set of control parameters under offline calibration is gained by the multi-island genetic algorithm. Finally, the offline calibration results are compared with the experimental results using a chassis dynamometer. The comparison results validate the effectiveness of the proposed offline calibrating approach, which is based on the radar chart method and the RBF neural network model on vehicle performance improvement and calibrating efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call