Abstract
In the context of the Damage Mechanics Challenge, we adopt a phase-field model of brittle fracture to blindly predict the behavior up to failure of a notched three-point-bending specimen loaded under mixed-mode conditions. The beam is additively manufactured using a geo-architected gypsum based on the combination of bassanite and a water-based binder. The calibration of the material parameters involved in the model is based on a set of available independent experimental tests and on a two-stage procedure. In the first stage an estimate of most of the elastic parameters is obtained, whereas the remaining parameters are optimized in the second stage to minimize the discrepancy between the numerical predictions and a set of experimental results on notched three-point-bending beams. The good agreement between numerical predictions and experimental results in terms of load–displacement curves and crack paths demonstrates the predictive ability of the model and the reliability of the calibration procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.