Abstract
AbstractThe drag due to breaking atmospheric gravity waves plays a leading order role in driving the middle atmosphere circulation, but as their horizontal wavelength range from tens to thousands of kilometers, part of their spectrum must be parameterized in climate models. Gravity wave parameterizations prescribe a source spectrum of waves in the lower atmosphere and allow these to propagate upwards until they either dissipate or break, where they deposit drag on the large‐scale flow. These parameterizations are a source of uncertainty in climate modeling which is generally not quantified. Here, we explore the uncertainty associated with a non‐orographic gravity wave parameterization given an assumed parameterization structure within a global climate model of intermediate complexity, using the Calibrate, Emulate and Sample (CES) method. We first calibrate the uncertain parameters that define the gravity wave source spectrum in the tropics, to obtain climate model settings that are consistent with properties of the primary mode of tropical stratospheric variability, the Quasi‐Biennial Oscillation (QBO). Then we use a Gaussian process emulator to sample the calibrated distribution of parameters and quantify the uncertainty of these parameter choices. We find that the resulting parametric uncertainties on the QBO period and amplitude are of a similar magnitude to the internal variability under a 2xCO2 forcing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.